Patterns of Genome-Wide Nucleotide Diversity in the Gynodioecious Plant Thymus vulgaris Are Compatible with Recent Sweeps of Cytoplasmic Genes
نویسندگان
چکیده
Gynodioecy is a sexual dimorphism where females coexist with hermaphrodite individuals. In most cases, this dimorphism involves the interaction of cytoplasmic male sterility (CMS) genes and nuclear restorer genes. Two scenarios can account for how these interactions maintain gynodioecy. Either CMS genes recurrently enter populations at low frequency via mutation or migration and go to fixation unimpeded (successive sweeps), or CMS genes maintain polymorphism over evolutionary time through interactions with a nuclear restorer allele (balanced polymorphism). To distinguish between these scenarios, we used transcriptome sequencing in gynodioecious Thymus vulgaris and surveyed genome-wide diversity in 18 naturally occurring individuals sampled from populations at a local geographic scale. We contrast the amount and patterns of nucleotide diversity in the nuclear and cytoplasmic genome, and find ample diversity at the nuclear level (π = 0.019 at synonymous sites) but reduced genetic diversity and an excess of rare polymorphisms in the cytoplasmic genome relative to the nuclear genome. Our finding is incompatible with the maintenance of gynodioecy via scenarios invoking long-term balancing selection, and instead suggests the recent fixation of CMS lineages in the populations studied.
منابع مشابه
The spatial genetic structure of cytoplasmic (cpDNA) and nuclear (allozyme) markers within and among populations of the gynodioecious Thymus vulgaris (Labiatae) in southern France.
Recent advances in molecular biology have allowed the development of techniques to contrast spatial differentiation in nuclear and cytoplasmic genes and thus provide important data on relative levels of gene flow by pollen and seed in higher plants. In this paper, we compare the spatial structure of nuclear (allozymes) and cytoplasmic (cpDNA) genes among populations of the gynodioecious Thymus ...
متن کاملThe effect of breeding system on polymorphism in mitochondrial genes of Silene.
Gynodioecy is a breeding system characterized by the co-occurrence of hermaphrodite and female individuals, generally as the result of nuclear-cytoplasmic interactions. The question remains whether the genetic factors controlling gynodioecy are maintained in species over long evolutionary timescales by balancing selection or are continually arising and being replaced in epidemic sweeps. If bala...
متن کاملEmergence of gynodioecy in wild beet (Beta vulgaris ssp. maritima L.): a genealogical approach using chloroplastic nucleotide sequences.
Gynodioecy is a breeding system where both hermaphroditic and female individuals coexist within plant populations. This dimorphism is the result of a genomic interaction between maternally inherited cytoplasmic male sterility (CMS) genes and bi-parentally inherited nuclear male fertility restorers. As opposed to other gynodioecious species, where every cytoplasm seems to be associated with male...
متن کاملApplication of DNA Molecular Markers in Plant Breeding (Review article)
Plant Breeding has utilized a wide range of techniques and methods to improve the quality and quantity of plants. The molecular markers are the tools that have provided a new perspective for plant breeding advancements. This article has reviewed the various advantages and uses of molecular markers and the utilization of the high potential of natural polymorphisms within communities, combined wi...
متن کاملMitochondrial DNA diversity, population structure, and gender association in the gynodioecious plant Silene vulgaris.
A highly variable mitochondrial DNA (mtDNA) restriction fragment length polymorphism (RFLP) locus is used to assess the population structure of mitochondrial genomes in the gynodioecious plant Silene vulgaris at two spatial scales. Thirteen mtDNA haplotypes were identified within 250 individuals from 18 populations in a 20-km diameter region of western Virginia. The population structure of thes...
متن کامل